BIOENGINEERING SEMINAR

“High-Resolution, Integrative Modelling of Biomolecular Complexes from Fuzzy Data”

Tuesday – May 1, 2018 – 10h00
EPFL – room AI 1 153

Prof. Alexandre Bonvin
Bijvoet Center for Biomolecular Research
Science Faculty/Chemistry, Utrecht University (NL)

host: Prof. Matteo Dal Peraro

Abstract

The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modelling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process.

We have developed for this purpose a versatile information-driven docking approach HADDOCK (http://www.bonvinlab.org/software). HADDOCK can integrate information derived from biochemical, biophysical or bioinformatics methods to enhance sampling, scoring, or both. The information that can be integrated is quite diverse: interface restraints from NMR, mutagenesis experiments, or bioinformatics predictions; shape data from small-angle X-ray scattering and, recently, cryo-electron microscopy experiments. In my talk, I will illustrate HADDOCK’s capabilities with various examples.

See current Bioengineering seminar calendar at https://bioengineering.epfl.ch/seminars